Convergence analysis of an adaptive finite element method for distributed control problems with control constraints

نویسندگان

  • A. Gaevskaya
  • M. Kieweg
چکیده

We develop an adaptive finite element method for a class of distributed optimal control problems with control constraints. The method is based on a residual-type a posteriori error estimator and incorporates data oscillations. The analysis is carried out for conforming P1 approximations of the state and the co-state and elementwise constant approximations of the control and the co-control. We prove convergence of the error in the state, the costate, the control, and the co-control. Under some additional non-degeneracy assumptions on the continuous and the discrete problems, we then show that an error reduction property holds true at least asymptotically. The analysis uses the reliability and the discrete local efficiency of the a posteriori estimator as well as quasi-orthogonality properties as essential tools. Numerical results illustrate the performance of the adaptive algorithm. Mathematics Subject Classification (2000). Primary 65K10; Secondary 49M15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An a Posteriori Error Analysis of Adaptive Finite Element Methods for Distributed Elliptic Control Problems with Control Constraints

We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residualtype a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the e...

متن کامل

Adaptive finite element method for elliptic optimal control problems: convergence and optimality

In this paper we consider the convergence analysis of adaptive finite element method for elliptic optimal control problems with pointwise control constraints. We use variational discretization concept to discretize the control variable and piecewise linear and continuous finite elements to approximate the state variable. Based on the well-established convergence theory of AFEM for elliptic boun...

متن کامل

Semismooth Newton Methods for Optimal Control of the Wave Equation with Control Constraints

In this paper optimal control problems governed by the wave equation with control constraints are analyzed. Three types of control action are considered: distributed control, Neumann boundary control and Dirichlet control, and proper functional analytic settings for them are discussed. For treating inequality constraints semismooth Newton methods are discussed and their convergence properties a...

متن کامل

Adaptive finite element methods for control constrained distributed and boundary optimal control problems

This contribution is concerned with the development, analysis and implementation of Adaptive Finite Element Methods (AFEMs) for distributed and boundary control problems with control constraints. AFEMs consist of successive loops of the cycle ’SOLVE’, ’ESTIMATE’, ’MARK’, and ’REFINE’. Emphasis will be on the steps ’SOLVE’ and ’ESTIMATE’. In this context, ’SOLVE’ stands for the efficient solutio...

متن کامل

An Adaptive Gradient-dwr Finite Element Algorithm for an Optimal Control Constrained Problem

We present an adaptive finite element algorithm for the numerical approximation of distributed control constrained problems governed by second order elliptic PDEs. The algorithm is based on a suitable co-operation between a gradient type descent numerical scheme and the dual weighted residual (DWR) method. We assess the efficiency of the algorithm on several test problems and compare its perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006